閱讀是很多人在生活里最愛的事件之一,歡迎走進本網站,今日小編講給大家帶來函數的定義是什么的相關消息,感興趣的話跟著小編一起一探究竟吧!
(資料圖)
給定一個數集A,假設其中的元素為x。現對A中的元素x施加對應法則f,記作f(x),得到另一數集B。假設B中的元素為y。則y與x之間的等量關系可以用y=f(x)表示。我們把這個關系式就叫函數關系式,簡稱函數。
函數的由來
中文數學書上使用的“函數”一詞是轉譯詞。是我國清代數學家李善蘭在翻譯《代數學》(1859年)一書時,把“function”譯成“函數”的。
中國古代“函”字與“含”字通用,都有著“包含”的意思。李善蘭給出的定義是:“凡式中含天,為天之函數。”中國古代用天、地、人、物4個字來表示4個不同的未知數或變量。這個定義的含義是:“凡是公式中含有變量x,則該式子叫做x的函數。”所以“函數”是指公式里含有變量的意思。我們所說的方程的確切定義是指含有未知數的等式。但是方程一詞在我國早期的數學專著《九章算術》中,意思指的是包含多個未知量的聯立一次方程,即所說的線性方程組。
函數的定義
給定一個數集A,假設其中的元素為x。現對A中的元素x施加對應法則f,記作f(x),得到另一數集B。假設B中的元素為y。則y與x之間的等量關系可以用y=f(x)表示。我們把這個關系式就叫函數關系式,簡稱函數。
函數概念含有三個要素:定義域A、值域C和對應法則f。其中核心是對應法則f,它是函數關系的本質特征。
首先要理解,函數是發生在集合之間的一種對應關系。然后,要理解發生在A、B之間的函數關系不止且不止一個。最后,要重點理解函數的三要素。
函數的對應法則通常用解析式表示,但大量的函數關系是無法用解析式表示的,可以用圖像、表格及其他形式表示。
在一個變化過程中,發生變化的量叫變量(數學中,常常為x,而y則隨x值的變化而變化),有些數值是不隨變量而改變的,我們稱它們為常量。
自變量(函數):一個與它量有關聯的變量,這一量中的任何一值都能在它量中找到對應的固定值。
因變量(函數):隨著自變量的變化而變化,且自變量取唯一值時,因變量(函數)有且只有唯一值與其相對應。
函數值:在y是x的函數中,x確定一個值,y就隨之確定一個值,當x取a時,y就隨之確定為b,b就叫做a的函數值。